From 6 Person-Days to 1: An AI-Driven Client Feature Development Case Study

From 6 Person-Days to 1: An AI-Driven Client Feature Development Case Study
# AI Coding Implementation in Complex Client-Side Development

## Introduction

AI-assisted coding is becoming a **mainstream trend**—Microsoft noted that 30% of their code is AI-generated.  
Despite its potential, adoption rates for complex **client-side** projects remain low due to:

- **Complex business logic**
- **Varied developer familiarity**
- Ongoing debates about **AI capability, instruction, and correctness**

Following the principle: *“Practice is the sole criterion for testing truth”*, our team evolved from simply encouraging developers to experiment with AI, to:
1. Assigning **real business tasks** to AI
2. Designing **AI-friendly architectures**
3. Establishing **prompt and workflow patterns** to maximize quality

---

## 1. Starting with AI Coding

We launched an **AI coding exercise**:
- All front-line developers used *oneDayNative* to complete a routine requirement  
- Collected feedback  
- Analyzed issues

---

### 1.1 AI Coding Problem Summary

![image](https://blog.aitoearn.ai/content/images/2025/10/img_001-71.jpg)

**Tool-related issues** are improving with Coding Agent innovations and are outside this scope.

Examples:
- **Claude Code**: Multi-subAgent approach for broader architectural awareness
- **Multi-tool calls**: To improve API/method lookup efficiency
- **Context compression**: Mitigates token-length limits

**Non-tool issues** often arise from:
- Insufficient **project understanding**
- Vague or indirect task descriptions
- Scattered keyword/context, leading to high token use and hallucinations

**Solution approach**:
- Clear and direct prompts
- Sufficient context  
- Relevant architectural and coding standards in input

Suggestions from feedback:

![image](https://blog.aitoearn.ai/content/images/2025/10/img_002-66.jpg)

---

## 2. Business Requirement Case Study

**Requirement**: Outfit feed framework to support multi-tab nesting.

**Involves**:
1. **UI Layer**: Multi-tab templates & feed components
2. **Service Layer**: New service for multiple info flow instances
3. **Debugging/Interaction**: Pull-to-refresh, clicks, etc.

Architecture:  
Human-designed → AI builds scoped modules  
*(We avoid “AI complete everything” upfront—explained later).*

![image](https://blog.aitoearn.ai/content/images/2025/10/img_003-63.jpg)

---

### 2.1 Service for Multiple Info Flow Instances

**Existing module**: `InfoFlowService` (handles one-to-one info flow).

Goal: Expand to **one-to-many** (multi-tab). Requires deep design understanding.

**Step 1.1**: Produce `InfoFlowService Module Analysis Report.md`

---

### Benefits of Scoped AI Tasks

- Improved accuracy
- Reduced hallucination
- Better efficiency for complex projects

---

## 3. `InfoFlowService` Module Analysis

### 3.1 Overview: Role in Architecture

- **Central data orchestration**
- **Unified API** for feed data
- **Event subscriptions**
- **Lifecycle integration** in `TurboService`

---

### 3.2 Modules Depending on `InfoFlowService`
- `InfoFlowListTemplate`
- `FeedStackContainer`
- `InfoFlowComponent`
- `SearchInfoFlowProvider`
- `HomeFeedCoordinator`

---

### 3.3 Dependency Graph

graph TD

InfoFlowService --> InfoFlowListTemplate

InfoFlowService --> FeedStackContainer

InfoFlowService --> InfoFlowComponent

InfoFlowService --> SearchInfoFlowProvider

InfoFlowService --> HomeFeedCoordinator


---

### 3.4 Class Diagram

classDiagram

class InfoFlowService {

+fetchInitialData(params)

+fetchNextPage(params)

+subscribe(listener)

+unsubscribe(listener)

+notifyUpdate(data)

}

class InfoFlowRepository {

+getLocalCache()

+saveCache(data)

+requestNetworkData(endpoint, params)

}

InfoFlowService --> InfoFlowRepository


---

### 3.5 Summary of Functions
**Roles**:
- Aggregator
- Notifier
- Cache Coordinator
- Microservice Participant

Ensures **separation of concerns** between UI and data.

---

## 4. MultiInfoFlowService Design Notes

Based on existing service, `MultiInfoFlowService` will:
- Comply with `MultiInfoFlowServiceProtocol : AnyObject`
- Avoid `pageDataService` dependency
- Manage **multi-tab feeds**
- Coordinate retrieval, caching, updates

---

## 5. TurboDressing UI Tree Structure

### V2 MultiTabTemplate Example

graph TD

VC --> MultiTabTemplate

MultiTabTemplate --> FeedStackContainer[Header Container]

MultiTabTemplate --> HorizontalPageContainer[Tabs Container]

HorizontalPageContainer --> InfoFlowComponent1

HorizontalPageContainer --> InfoFlowComponent2

HorizontalPageContainer --> InfoFlowComponentN


---

### Next Steps
- **MultiTabTemplate**: UITableView with header/tabs containers  
- **HorizontalPageContainer**: Pages horizontally  
- **InfoFlowComponent**: Tab-specific info flow rendering  

---

## 6. Extending Data Binding Protocol — `isRepeat`

### Requirements:
- Understand project → Create `PageModelV2数据绑定规则.md`
- Then extend data binding to support `isRepeat`

**Example JSON**:

{

"subTemplates": [

{

"layout": {

"tabs": [

{

"isRepeat": "true",

"type": "infoflowListComponent",

"data": "{{$.tabs}}"

}

]

}

}

]

}


**Logic**:
- If `isRepeat` is `true`, `data` field must be array
- Create `CardModel` per array element  
- Applies to root and sub-templates

---

**Outcome**:
- Acceptance rate: **95%**
- Fixed duplication/readability issues after feedback  

![image](https://blog.aitoearn.ai/content/images/2025/10/img_005-60.jpg)

---

## 7. Efficiency Metrics

![image](https://blog.aitoearn.ai/content/images/2025/10/img_006-54.jpg)

- AI-assisted coding: **1 person-day** + manual checks
- Manual estimate: **6 person-days**
- Integrated debug buffer: +33%
- Net efficiency gain: **~300%**

---

## 8. Reflection

### 8.1 Task Suitability for AI
![image](https://blog.aitoearn.ai/content/images/2025/10/img_007-54.jpg)

**Better suited for AI**:
- Clear dependencies
- Strong documentation

**Requires human review**:
- All AI output

---

### 8.2 Breaking Down Work
- Smaller, cohesive units
- Easier verification
- Less prompt complexity

---

### 8.3 Crafting Effective Prompts
- Direct, explicit descriptions
- Predictable output scope
- Avoid overly long context

![image](https://blog.aitoearn.ai/content/images/2025/10/img_008-50.jpg)

---

### 8.4 Building the Knowledge Base
- Architecture docs + Coding constraints
- Tools: *OneDayNative*, *Yuque*, *Cursor*

![image](https://blog.aitoearn.ai/content/images/2025/10/img_009-44.jpg)

---

## 9. Business Development Paradigm

Example: **TurboFlow** microservice framework

Directory:

Sources/

├── Core/

│ ├── Base/

│ ├── Engine/

│ ├── Data/

│ └── Utils/

├── Biz/

│ ├── Services/

│ ├── Components/

│ ├── Containers/

│ └── Templates/


---

## 10. Cursor Rules Overview

(Developers follow specific `.mdc` rule files for architecture, component, template, service, model, UI tree.)

---

## 11. Development Workflow

**Approach**:
- Align technical solution
- Use AI during coding stage for new features
- Manual coding for integration debug work

![image](https://blog.aitoearn.ai/content/images/2025/10/img_010-44.jpg)

---

**Example**: Recent 3-day work snapshot  
![image](https://blog.aitoearn.ai/content/images/2025/10/img_011-42.jpg)

---

## 12. Final Notes

Combining **AI-assisted coding** with platforms like [AiToEarn官网](https://aitoearn.ai) enables:
- Centralized generation
- Multi-platform release
- Analytics & ranking

Especially beneficial for:
- Maintaining cross-platform design consistency
- Converting AI output into measurable, monetizable work

Read more