Google Java Agent Development Kit Adds LangChain4j Integration

Java Agent Development Kit 0.2.0: LangChain4j Integration Expands LLM Support

The Java Agent Development Kit (ADK) 0.2.0 release delivers a major upgrade by integrating the LangChain4j framework.

This significantly broadens support for all LLMs compatible with LangChain4j, enabling Java developers to work with a much wider range of AI models.

---

Previous Limitations vs. New Capabilities

Before LangChain4j Integration

  • Java ADK supported only:
  • Google Gemini
  • Anthropic Claude

In contrast, the Python ADK leveraged LiteLLM to support many more models.

Now, with LangChain4j

Java developers can access:

  • OpenAI models
  • Anthropic
  • Mistral
  • All models supported by Ollama or Docker Model Runner, such as:
  • Gemma
  • Qwen
  • Phi
  • and more...

---

Multi-Model Scenarios

Guillaume Laforge — Developer Relations Engineer at Google and LangChain4j contributor — led the integration effort.

LangChain4j enables developers to mix and match models in multi-agent setups via agent tools:

> You can select the optimal model for each task.

> For example:

> - Use an ultra-fast model for simple classification to handle request routing.

> - Use a more powerful model for heavy reasoning, such as the Gemini 2.5 Thinking model.

---

Example: Claude Main Agent with OpenAI Weather Tool

Scenario:

Main agent runs on Claude; a tool agent uses OpenAI to provide weather data.

Code:

LlmAgent agent = LlmAgent.builder()
    .name("friendly-weather-app")
    .description("Friend agent that knows about the weather")
    .model(new LangChain4j(claudeModel, CLAUDE_3_7_SONNET_20250219))
    .instruction("""
        You are a friendly assistant. If asked about the weather forecast for a city,
        you MUST call the `weather-agent` function.
    """)
    .tools(AgentTool.create(weatherAgent))
    .build();

---

Additional Enhancements in ADK 0.2.0

Expanded Tooling

  • FunctionTools creation from object instances
  • Asynchronous tool operations for better concurrency

Improved Agent Control

  • More granular programming control over agent execution
  • Stronger agent logic and memory handling with:
  • Callback chains
  • New memory management primitives for flexible data storage, retrieval, and processing

---

Getting Started

The Java ADK is still in its early stages but part of the larger Agent Development Kit launched earlier this year.

To explore:

  • Follow the Getting Started Guide
  • Fork Guillaume Laforge’s template project on GitHub

---

Broader Ecosystem Impact

LangChain4j integration joins a growing ecosystem of tools that connect advanced AI workflows across platforms.

Example: AiToEarn官网

An open-source global AI content monetization platform where creators can:

  • Generate AI-driven content
  • Publish across multiple social/media platforms
  • Automate publishing processes
  • Access analytics and rankings

This interconnected tooling is making cross-platform AI creativity and monetization more efficient than ever.

---

Original article: https://www.infoq.com/news/2025/09/goodle-adk-langchain4j/

Read more

Tesla’s Upcoming Release, New Audi A6L Unveiled, and XPeng P7+ Range-Extended Version Arrives!

Tesla’s Upcoming Release, New Audi A6L Unveiled, and XPeng P7+ Range-Extended Version Arrives!

金九银十车市观察:新车型与技术动态 虽然今年的 “金九银十” 没有往年那么火热,但各大品牌的终端优惠和市场活动依然密集展开。展厅之外,汽车厂商也在酝酿新一轮攻势——最新一期 工信部产品公告 已经提前揭晓了牌桌上的新玩家和新打法。 本期公告的核心亮点有两条主线: * 豪华品牌跨界合作:奥迪在 A6L 等核心燃油车型上全面搭载华为辅助驾驶方案,代表传统汽车工业在技术路径上的一次变革。 * 纯电与混动的界线模糊化:以小鹏为代表的纯电新势力开始全面拥抱增程技术。 下面我们按车型顺序解析本次公告中的重点内容。 --- 特斯拉 Model Y+ 长续航后驱版 主要变化: * 新增长续航版后轮驱动车型:225kW 后置单电机,CLTC 续航有望超过 800km。 * 填补了 26.35 万–31.35 万元的价格空档,为不需要四驱但注重续航的用户提供新选择。 * 更低门槛带来更长续航,有望吸引观望竞品的潜在买家。 * 有助于稳定 Model Y 在主流市场的竞争力。 --- 一汽奥迪 A6L &

By Honghao Wang
Will LLMs Be Another “Painful Lesson”? Reinforcement Learning Pioneer Sutton Warns of a Trillion-Dollar AI Bubble

Will LLMs Be Another “Painful Lesson”? Reinforcement Learning Pioneer Sutton Warns of a Trillion-Dollar AI Bubble

📌 Sutton’s Latest Interview: “Have LLMs Learned the Bitter Lesson?” Richard Sutton — famed for his “Bitter Lesson” concept and previous claim that “LLMs are a dead end” — expands his critique in a high-profile panel discussion. Discussion Participants: * Richard Sutton * Sendhil Mullainathan — MacArthur Fellow, MIT Professor * Niamh Gavin — Applied AI Scientist,

By Honghao Wang