MiniMax-M2 Released! 10B Activations, Built for Efficient Coding and Agent Workflows

MiniMax-M2 Released! 10B Activations, Built for Efficient Coding and Agent Workflows
# MiniMax-M2: High-Efficiency Open-Source MoE Model for Coding & Agent Tasks  
*2025-10-27 18:29 Zhejiang*  

MiniMax-M2 is a **highly efficient open-source Mixture-of-Experts (MoE) model** with **230B total parameters** and **only 10B activated at a time**.  
It is optimized for **coding** and **agent automation** tasks, delivering leading benchmark performance while enabling **low-cost deployment**.

![image](https://blog.aitoearn.ai/content/images/2025/10/img_001-584.jpg)

---

## 0. Preface  

Today, Minimax officially **releases and open-sources** **MiniMax-M2**, purpose-built for **max-level coding** and **agentic applications**.  

Key advantages:  
- **230B total parameters, lightweight 10B activation**  
- **Strong general intelligence**, deeply optimized for code & agent workflows  
- **Compact & scalable** design for smooth deployment  

![image](https://blog.aitoearn.ai/content/images/2025/10/img_002-542.jpg)

---

## 1. Key Highlights  

### **1.1 Outstanding General Intelligence**  
- Highly competitive performance in **math, science, instruction-following, coding**, and **agent tool usage**  
- **Ranks #1 globally** among open-source models in comprehensive benchmarks (Artificial Analysis)  

### **1.2 Coding Expertise**  
- Handles **multi-file coding projects** end-to-end  
- Supports the full “code → run → debug → fix” cycle  
- **Top scores** on **Terminal-Bench** & **(Multi-)SWE-Bench**  
- Proven effectiveness in **production development environments**  

### **1.3 Agentic Capabilities**  
- Plans & executes complex **toolchains** including Shell, browsers, Python environments, MCP tools  
- **BrowseComp benchmark**: excels in discovering obscure info sources while keeping results **traceable**  
- Demonstrates **self-correction** & **fault recovery**  

### **1.4 Efficient Design**  
- **10B active parameters** → **lower latency**, **cost savings**, higher throughput  
- Designed for **multi-agent workflows** & **rapid collaboration**  
- Perfect for the rising demand for **deployable coding & agent solutions**  

---

## 2. Benchmark Overview  

MiniMax-M2 achieves **state-of-the-art** performance in key developer-aligned benchmarks:  
- **SWE-bench**, **Terminal-Bench**, **BrowseComp**, **HLE w/tools**, **FinSearchComp-global**  
- Simulates daily work in terminals, IDEs, & CI environments  

![image](https://blog.aitoearn.ai/content/images/2025/10/img_003-508.jpg)  

### **Evaluation Process**  
Metrics marked with * came from **official reports**. Others were tested via:  

- **SWE-bench Verified**:  
  - Based on **OpenHands**  
  - Test setup: 128k context, max 100 steps, no test-time scaling  
  - Git content removed → agent sees only relevant faulty code segment  

- **Multi-SWE-Bench & SWE-bench Multilingual**:  
  - Using `claude-code` CLI tool (max 300 steps)  
  - Tested 8 times, averaged  

- **Terminal-Bench**:  
  - `claude-code` from official repo (commit 94bf692)  
  - 8 repeated tests, averaged  

- **ArtifactsBench**:  
  - Official implementation  
  - Evaluation model: Gemini-2.5-Pro  
  - Averaged over 3 runs  

- **BrowseComp, BrowseComp-zh, GAIA (text only), xbench-DeepSearch**:  
  - Same framework as WebExplorer (Liu et al., 2025)  
  - GAIA subset identical to WebExplorer’s  

- **HLE (w/ tools)**:  
  - Search tool + Python (Jupyter) environment  
  - Pure-text subset benchmark  

- **τ²-Bench**:  
  - "Extended thinking w/tool use" mode  
  - GPT-4.1 as user simulator  

- **FinSearchComp-global**:  
  - GPT-5-Thinking, Gemini-2.5-Pro, Kimi-K2 → official scores  
  - Others tested via open-source framework with search & Python  

- **AgentCompany**:  
  - OpenHands 0.42 agent framework for scoring  

---

### **Artificial Analysis Global Ranking**  
**MiniMax-M2** ranked **#1 worldwide** among open-source models in:  
- Mathematics  
- Science  
- Programming & coding  

![image](https://blog.aitoearn.ai/content/images/2025/10/img_004-477.jpg)

> Source: Official Artificial Analysis ([https://artificialanalysis.ai/](https://artificialanalysis.ai/))

---

## 3. Why 10B Activation is Optimal for Agents  

**10B active parameters** deliver an ideal balance for modern **Plan → Act → Verify** agent workflows:  

- ✅ **Faster feedback loops** for cycles like “edit → run → test” and “search → browse → cite”  
- ✅ **Higher cost efficiency**, enabling more concurrent tasks per budget  
- ✅ **Simpler resource planning** with smaller memory use per request  

---

## 4. Model Usage  

### **4.1 Try MiniMax Agent**  
- [MiniMax Agent product](https://agent.minimaxi.com/) → **Free for limited time**  

### **4.2 Use via API**  
- [MiniMax Open Platform](https://platform.minimaxi.com/docs/guides/text-generation) → **Free for limited time**  

### **4.3 Deploy Locally**  
- Model weights: [ModelScope](https://modelscope.cn/models/MiniMax/MiniMax-M2)  

---

## 5. Model Inference with ms-swift  

### **Installation**  

uv pip install 'triton-kernels @ git+https://github.com/triton-lang/triton.git@v3.5.0#subdirectory=python/triton_kernels' \

vllm --extra-index-url https://wheels.vllm.ai/nightly --prerelease=allow

pip install git+https://github.com/modelscope/ms-swift.git


### **Run Inference**  

CUDA_VISIBLE_DEVICES=0,1,2,3 \

swift infer \

--model MiniMax/MiniMax-M2 \

--vllm_max_model_len 8192 \

--vllm_enable_expert_parallel \

--vllm_tensor_parallel_size 4 \

--infer_backend vllm


**Recommended parameters**:  

temperature = 1.0

top_p = 0.95

top_k = 40


---

## 6. Summary  

If you need **flagship coding & agent features** without the pain of high costs or complex deployment:  
**MiniMax-M2** provides **top-tier performance**, fast execution, and flexible deployment.

For creators seeking cross-platform monetization of AI content, platforms like [AiToEarn官网](https://aitoearn.ai/) integrate:  
- AI content generation  
- Cross-platform publishing  
- Analytics  
- Model competition ranking  

Publish simultaneously to: **Douyin, Kwai, WeChat, Bilibili, Xiaohongshu, Facebook, Instagram, LinkedIn, Threads, YouTube, Pinterest, and X**.

---

**🔗 Links:**  
- [Read Original](https://modelscope.cn/models/MiniMax/MiniMax-M2)  
- [Open in WeChat](https://wechat2rss.bestblogs.dev/link-proxy/?k=1e1edd5a&r=1&u=https%3A%2F%2Fmp.weixin.qq.com%2Fs%3F__biz%3DMzk3NTc1NTU0Mw%3D%3D%26mid%3D2247501773%26idx%3D1%26sn%3D591b8d9f2fbaabf3cc9a6cf44366e3e5)

Read more