Production AI

Zoomer: Enhancing Meta’s Large-Scale AI Performance Through Intelligent Debugging and Optimization

Production AI

Zoomer: Enhancing Meta’s Large-Scale AI Performance Through Intelligent Debugging and Optimization

# Introducing Zoomer: Meta’s Automated AI Debugging & Optimization Platform ## Overview **Zoomer** is Meta’s **comprehensive, automated platform** for profiling, debugging, and optimizing AI workloads. It supports **all training and inference operations** across Meta, delivering **deep performance insights** that: - Reduce **energy consumption** - Accelerate **workflows** - Improve **AI infrastructure

Translate the following blog post title into English, concise and natural. Return plain text only without quotes.

AI 生成代码速度像“开挂”,一上线却疯狂“踩雷”!

Production AI

Translate the following blog post title into English, concise and natural. Return plain text only without quotes. AI 生成代码速度像“开挂”,一上线却疯狂“踩雷”!

AI 写代码的速度已经快到离谱了,一句话就能生成一堆“看起来能跑”的函数。但问题是:这些代码真正上生产环境后,往往不是崩就是漏,维护成本甚至比人类敲的还高。我们现在遇到的,不是“代码不够多”,而是“代码不靠谱”。那么,既然生产力爆炸了,为什么可靠性没跟上?又该怎么补上这块短板?这成了所有工程团队必须面对的新问题。 原文:https://thenewstack.io/ai-code-doesnt-survive-in-production-heres-why/ 作者 | Animesh Koratana责编 | 苏宓 出品 | CSDN(ID:CSDNnews) 我几乎每天都能看到类似的 AI 演示:只用一个提示词,就能生成一款完整的应用。对着 AI 助手,输入几句自然语言之后,啪的一下,一个“打磨精良”的产品就出现了。 但在这些火爆的趋势背后,有个耐人寻味的事实:我们并没有看到成品软件数量的提升,也没有看到预期中的创新速度。 谷歌一位工程副总裁近期说过一句话:

Production AI

Netflix Solves Large-Scale Data Deletion Challenges with Centralized Platform Architecture

Netflix’s Centralized Data Deletion Platform: Architecture and Insights Netflix engineers presented their centralized data deletion platform architecture at QCon San Francisco — tackling a critical, often overlooked system design challenge. The platform coordinates deletions across heterogeneous data stores while balancing durability, availability, and correctness. Impact so far: 76.8 billion